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Abstract

Purpose – This paper sets out to perform a detailed numerical study of turbulent channel flow with
strong temperature gradients using large-eddy simulations.

Design/methodology/approach – A recently developed time-accurate algorithm based on a
predictor-corrector time integration scheme is used in the simulations. Spatial discretization is performed
on a collocated grid system using a flux interpolation technique. This interpolation technique avoids the
pressure odd-even decoupling problem that is typically encountered in collocated grids. The eddy viscosity
is calculated with the extension of the dynamic Smagorinsky model to variable-density flows.

Findings – The mean velocity profile at the cold side deviates from the classical isothermal
logarithmic law of the wall. Nonetheless, at the hot side, there is a better agreement between the
present results and the isothermal law of the wall. Further, the numerical study predicts that the
turbulence kinetic energy near the cold wall is higher than near the hot one. In other words heat
addition tends to laminarize the channel flow. The temperature fluctuations were also higher in the
vicinity of the cold wall, even though the peak of these fluctuations occurs at the side of the hot wall.

Practical implications – The findings of the paper have applications in the design and analysis of
convective heat transfer equipment such as heat exchangers and cooling systems of nuclear reactors.

Originality/value – The paper presents the first numerical results for non-isothermal turbulent
channel flow with high wall-temperature ratios (up to 9). These findings can be of interest to scientists
carrying out research in turbulent flows.
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1. Introduction
In this paper, we present large-eddy simulations (LES) results of incompressible,
variable density, turbulent channel flows in the presence of strong temperature
gradients. Detailed information about the near wall behaviour of these flows can be
obtained via either LES or DNS. Historically, large-eddy simulations of turbulent,
wall-bounded flows were first performed in isothermal, incompressible systems.
Subsequently, compressible (non-zero Mach number) channel flows were studied via
LES; see, for example, Hartel et al. (1994), Lenormand et al. (2000), Terracol et al. (2000),
Okong’o et al. (2000) and von Kaenel et al. (2002) and references therein. Such
simulations require the use of fully compressible Navier-Stokes solvers.

However, as the Mach number approaches zero, the governing equations become very
stiff and, therefore, the compressible solvers become prohibitively slow. Special numerical
techniques such as preconditioning can only partly remove the numerical complexities
arising from the stiffness of the governing equations. An alternative way to the numerical
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treatment of low Mach number flows is to employ the so-called low Mach number
approximation, Majda and Sethian (1985). However, until recently, there has not been
developed an algorithm for these equations that is robust enough to treat flows with strong
temperature gradients. As a result, only a few LES studies of low Mach number flows with
heat transfer have appeared in the literature. see, for example, Wang and Pletcher (1996),
Nicoud (2000), Vazquez and Metais (2002), Dalley et al. (2003) and Xu et al. (2004).

In particular, and to the authors’ best knowledge, large-eddy simulations of channel
flows with high-heat transfer rates at low-Mach numbers have only been presented in
Wang and Pletcher (1996), Nicoud (2000) and Dalley et al. (2003). In Wang and Pletcher
(1996) the authors examined wall-temperature ratios of 1.02 and 3, using a fully
compressible solver combined with preconditioning. In Nicoud (2000) an
incompressible low-Mach number solver was used for flows with wall temperature
ratios up to four. Finally, in Dalley et al. (2003) the authors presented LES results for
flows where the wall heat fluxes were constant (instead of the wall temperatures) using
a compressible solver. In that study, the heat flux resulted to wall-to-bulk temperature
ratios of 1.5 for the heated case and 0.56 for the cooled case.

In the present study, we focus our attention on channel flows at high
wall-temperature ratios in the absence of compressibility effects. Thus, we employ
the low-Mach number approximation for the balance equations of mass, momentum
and energy. According to this approximation, density variations are due only to
temperature variations and not due to pressure variations. Thus, for a perfect gas, the
density is inversely proportional to the temperature and is independent of the pressure.
LES on these flows are performed with a newly-developed solver for the low-Mach
number equations (Lessani and Papalexandris, 2006). This solver is robust enough to
treat flows of wall-temperature ratios up to nine. Such ratios are much higher than the
ratios considered in the literature thus far.

Large temperature gradients strongly effect the thermo-physical properties of the
fluid such as the density, dynamic viscosity and thermal conductivity. As a result of
the property variations of the fluid, the near-wall behaviour of the non-isothermal
channel flow is substantially different from that of the isothermal one. It is shown that
the velocity and temperature fluctuations are considerably weaker in the hot wall
region than in the cold wall region. This can be attributed to the increase of the
dynamic viscosity with the temperature.

The paper is organized as follows. The governing equations along with a brief
description of the algorithm are presented in Section 2. Detailed LES results (including
turbulence statistics) for the flows of interest are presented in Section 3. This section
also contains a discussion of the effects of heat addition on the mean flow. Finally,
Section 4 contains some general remarks about the results that we present herein.

2. Governing equations and numerical method
In LES one computes the motion of the large-scale structures and models the nonlinear
interactions between the large-scale structures and the small-scale ones. The governing
equations for the large-scales are obtained after filtering. The filtering operation can be
written in terms of the convolution integral:

�fðxÞ ¼

Z
D

Gðx 2 x 0 Þf ðx 0 Þdx 0: ð1Þ
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In the above equation, f is a turbulent field, G is some spatial filter of width equal to the
grid spacing, and D is the flow domain. For variable density flows the Favre averaging is
used rather than the standard one. A Favre-filtered variable is defined as, ~f ¼ rf= �r:
After filtering, the equations are non-dimensionalized and the low-Mach number
approximation (Majda and Sethian, 1985) is applied to them. This approximation amount
to a series expansion of the flow variables with respect to the Mach number. These
expansions are substituted into the conservation equations for the mass, momentum,
energy, and also into the ideal gas law. Subsequently, by collecting the lowest order
terms, the following low-Mach number approximation equations are obtained:

› �r

›t
þ

› �r~ui

›xi

¼ 0; ð2Þ

› �r~ui

›t
þ

› �r~ui ~uj

›xj

¼ 2
›�p

›xi

þ
1

Re

›

›xj

ðmþ mtÞ 2 ~Sij 2
2

3
~Skkdij

� �� �
; ð3Þ

�rcp
› ~T

›t
þ �rcp ~uj

› ~T

›xj

¼
1

Re Pr

›

›xj

ðkþ ktÞ
› ~T

›xj

� �
þ

g2 1

g

dP0

dt
; ð4Þ

P0 ¼ �r ~T: ð5Þ

In the equations above, P0 is the first-order component of the pressure expansion. P0 is
uniform and is interpreted as the thermodynamic pressure. Also, �p is the second-order
component of the expansion. This component is non-uniform and is interpreted as the
dynamic pressure. In an open system, P0 equals the outflow pressure, whereas in
closed domains it is calculated via integration of the ideal gas equation of state (5) over
the flow domain:

P0 ¼
M 0R

ð1= ~T ÞdV
; ð6Þ

where M0 is the fluid mass inside the closed domain.
Also, in equation (3), ~Sij ¼ 1=2ð›~ui=›xj þ ›~uj=›xiÞ is the large-scale stress-rate

tensor. Given the reference values of density rr, velocity ur, length Lr, dynamic
viscosity mr, specific heat cp,r, and thermal conductivity kr, the Reynolds and Prandtl
numbers may be defined as, Re ¼ ðrrurLrÞ=mr and Pr ¼ ðmrcp;rÞ=kr, respectively.
A simplified Sutherland law is used for the dimensionless thermal conductivity k, and
dynamic viscosity m, i.e. m ¼ k ¼ ~T 0:7 The eddy viscosity mt, is calculated with the
dynamic Smagorinsky model (Moin et al., 1991; Lilly, 1992). The turbulent heat flux is
modeled with a gradient transport model (Moin et al., 1991), with kt ¼ mtcp;r=Prt:
The turbulent Prandtl number is set equal to Prt ¼ 0.9. The ratio of specific heats at the
reference temperature is denoted by g ¼ 1.4.

The numerical procedure is described in detail in Lessani and Papalexandris
(2006). Herein we limit ourselves to a summary of the method. The governing
equations are discretized on a collocated grid system, combined with a flux
interpolation technique to avoid the pressure odd-even decoupling that is typically
encountered when using such grids. This technique was originally applied to

Numerical study
of turbulent

channel flow

547



incompressible flows (Rhie and Chow, 1983; Morinishi et al., 1998), and has been
generalized to variable density flows in Lessani and Papalexandris (2006).

The discretization of the convective term is achieved via the introduction of three
auxiliary scalar fluxes Fi ; rui , which are staggered with respect to other variables in
space. This implies that each auxiliary flux Fi is defined on the center of the cell interface
that is normal to the xi direction, whereas all flow quantities are evaluated at the centers
of the computational cells. The convective terms in the streamwise and spanwise
directions are discretized with a fourth-order scheme, whereas the convective terms in
the normal direction and all viscous terms are second order. In order to increase the
stability of the calculations and the allowable time step, the diffusion terms in the normal
direction, where the grid is clustered near the walls, are treated implicitly.

The time integration of the energy equation and the update of the density are
performed with a two-stage predictor-corrector scheme. At each stage of this scheme,
an Adams-Bashforth method is used for the (time) integration of the momentum
equations. The velocity field is calculated with a projection method which results to a
Poisson equation for the dynamic pressure. This equation is solved with a Fast Fourier
Transform in the periodic directions combined with a tridiagonal solver in the normal
direction. For the subgrid-scale model, we have employed the extension of the dynamic
Smagorinsky model for variable-density flows (Moin et al., 1991), combined with the
least square technique (Lilly, 1992), and with averaging in the periodic directions.

3. Numerical results
In this section, we present the numerical results of the channel flow simulations. First,
in order to assess the accuracy of the numerical method, an LES of isothermal channel
flow is presented and the results are compared with the existing data in the literature.
Subsequently, the LES of non-isothermal channel flow with strong temperature
gradients is considered and the effects of heat transfer on the mean flow and the
turbulent statistics are discussed.

3.1 Isothermal flow
Let x, y, and z, denote the streamwise, normal, and spanwise directions, respectively.
The channel consists of two walls that are parallel to each other and parallel to the xz
plane. The dimensions of the domain are 4pd £ 2d £ ð4=3Þpd; with d being the channel
half-width. The boundaries of the domain normal to the x and z directions are periodic.
No-slip boundary conditions are assumed on the walls of the channel. The coordinates
are normalized according to:

xþ ¼ rwutx=mw; yþ ¼ rwuty=mw; zþ ¼ rw ut z=mw; ð7Þ

with ut ¼ ðtw=rÞ
1=2 being the friction velocity and tw being the wall shear stress.

A mesh of 1283 points is used for the isothermal DNS calculation. Uniform meshes
are used in the streamwise and spanwise directions, with Dxþ . 17:6 and Dzþ . 5:9
(in wall units). A non-uniform mesh with hyperbolic tangent distribution is used in the

normal direction. The first mesh point away from the wall is at yþfp . 0:23 and the

maximum spacing at the centerline of the channel is Dyþmax . 6:84: The Reynolds

number based on the friction velocity and the channel half width is Ret ¼ rutd=m ¼ 180:
The mean velocity profile and the turbulence statistics are shown in Figures 1 and 2.

HFF
18,3/4

548



Figure 1.
Isothermal channel flow
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Figure 2.
Isothermal channel flow
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From these figures, it can be confirmed that our LES results compare very well with
the DNS results in Kim et al. (1987).

3.2 Non-isothermal flow
For the non-isothermal turbulent channel flow, we consider a channel whose
dimensions are the same as above but the two walls are kept at different temperatures.
A mesh of 643 points is used for the LES. Uniform meshes are used in the streamwise
and spanwise directions. A non-uniform mesh with hyperbolic tangent distribution is
used in the wall-normal direction. Let Th, and Tc denote the temperatures of the hot
and cold walls, respectively. Two different cases, corresponding to different wall
temperature ratios, are considered herein. More specifically, we have considered ratios
of Th/Tc ¼ 6 and 9.

The simulation parameters are listed in Table I. Subscripts “h” and “c” denote the hot
and cold wall, respectively. The subscript “w” is used for the values at the
walls, w ¼ {h; c}. The Reynolds number based on the values on the centerline
is, Recl ¼ rclucld=mcl. The Reynolds number based on the values near the wall is,
Ret ¼ rwutwd=mw. The friction velocity is utw ¼ ðtw=rwÞ

1=2, where tw is the wall shear
stress and rw is the density of the flow in the vicinity of the wall. The average friction
velocity is �ut ¼ ð1=2Þðuth þ utcÞ: Finally, the heat flux parameter is defined as Bqw ¼
qw=ðrwcputwTwÞ; with qw the heat flux, and cp the specific heat at constant pressure.

The flow is driven by the same mean pressure gradient for the two temperature
ratios. As a result, by increasing the temperature ratio, the centerline Reynolds number
decreases. In particular, Recl ¼ 1,531 at Th/Tc ¼ 6, and Recl ¼ 1,055 at Th/Tc ¼ 9.
The pressure gradient that was considered in our study leads to a centerline Reynolds
number of 3,300 when the temperature ratio is equal to 1. The difference between the
friction Reynolds numbers of the two walls increases with the temperature ratio. Thus,
in order to have a well resolved flow near the wall, one has to pay attention to ensure
that the distance of the first grid point (fp), away from the wall satisfies:

yþfp ;
rw utwyfp

mw
, 1:

In our calculations this condition has always been satisfied.
In principle, the turbulent Prandtl number can be calculated using the dynamic

procedure. During our numerical experiments, however, it was predicted that it
remained almost constant from wall to wall for the cases we considered. Therefore, it
was subsequently set to a constant value of Prt ¼ 0.9 for the sake of computational
savings. As in earlier LES studies of non-isothermal channel flows (Wang and Pletcher,
1996; Nicoud, 2000), buoyancy forces are neglected. LES studies that take into account
these forces, combined with an efficient subgrid-scale model for the mixed effects of
property variations and buoyancy, certainly represent an interesting subject. Such
studies, however, are beyond the scope of the present article. The mean streamwise
velocity profiles , uþ

VD . =utw for the hot and cold walls are shown in Figure 3 as

Th/Tc Recl Reth-Retc uth=�ut 2 utc=�ut Bqh Bqc

6.0 1,531 32.5-325 1.33-0.64 2.55 £ 1022 5.60 £ 1022

9.0 1,055 24.9-376.7 1.42-0.53 2.81 £ 1022 8.16 £ 1022

Table I.
Simulation parameters
for the non-isothermal
channel flow
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functions of the wall coordinates yþ ¼ rwutwy=mw: In Figure 3, the logarithmic law of
the wall, uþ ¼ 2:5lnyþ þ 5:5, is also plotted to show the deviation from the isothermal
case. In these figures, the van Driest velocity transformation was employed to collapse
the results of a variable-density flow into the classical logarithmic law. This
transformation is expressed as:

uþ
VD ¼

Z uþ

0

r

rw

� �1=2

duþ: ð8Þ

In Figure 3 (top), at the side of the cold wall, we can observe a significant deviation of
the velocity profiles from the reference empirical law of the wall. On the other hand, no
such deviation is observed at the side of the hot wall, Figure 3 (bottom). The same
over-prediction at the cold wall side was reported in Wang and Pletcher (1996) for a
temperature ratio of 3. This deviation may be attributed to the fact that the van Driest
transformation does not provide an effective means for collapsing results of
variable-density flows if the temperatures (density) variations are too high. On the
other hand, the result reported in Nicoud (2000) for a temperature ratio of 4 showed
good agreement with the logarithmic law by use of the van Driest transformation. In
Nicoud (2000) however, the dimensionless thermal conductivity and dynamic viscosity
were chosen to be proportional to 1=

ffiffiffiffi
T

p
instead of following Sutherland law. Such

dependence of the transport coefficients on the temperature is non-physical.
In Figure 4, we present results of the turbulence kinetic energy, kt ¼ 1=2 , u0

iu
0
i . =�u2

t:
In this figure, one can see that the velocity fluctuations in the region near the hot wall

Figure 3.
Non-isothermal

channel flow
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decrease and heating tends to laminarize the flow. This can be attributed to the increase of
the dynamic viscosity and the decrease of the density in that region. The turbulence
intensities (urms=�ut; vrms=�ut; wrms=�ut) for the cold and hot walls are shown in Figures 5
and 6, respectively, as functions of the wall coordinates yþ ¼ rwutwy=mw. As mentioned
before, the subscript “w” is used for the values at the wall, with w ¼ c for the cold wall and
w ¼ h for the hot wall. In Figure 5 by comparing the velocity fluctuations at the cold side
for the two temperature ratios, it is observed that the magnitudes of the velocity
fluctuations in the vicinity of the cold wall are higher for the lower temperature ratio of
Th/Tc ¼ 6. Near the core of the channel and away from the cold wall, however, their
magnitudes are almost the same. At the hot side in Figure 6, the increase of the temperature
ratio seems not to have further effect on the spanwise and normal fluctuations, but it
decrease the streamwise component.

Figure 7 (top) shows the mean temperature distribution ðT 2 TcÞ=ðTh 2 TcÞ,
across the channel. We note that the fully developed condition requires that the wall
heat flux be the same on both walls. According to the Sutherland law, the thermal
conductivity increases with the temperature, which results in a steeper temperature
gradient on the cold wall than on the hot wall. In Figure 7 (bottom), the distribution of
the temperature turbulent fluctuations Trms is presented. In this figure, we can observe
that the temperature fluctuations in the vicinity of the cold wall are higher than
the fluctuations in the vicinity of the hot wall. However, the peak of the temperature
fluctuations is at the side of the hot wall. And finally, temperature contours at
one snapshot at a typical plane normal to the walls are shown in Figure 8.
The laminarization of the flow in the vicinity of the hot wall can be clearly seen in these
figures for both temperature ratios.

Figure 4.
Non-isothermal
channel flow
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Figure 5.
Non-isothermal channel

flow
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Figure 7.
Non-isothermal channel
flow
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Figure 8.
Temperature contours at
one snapshot in a typical
plane normal to the walls

–0.5 0 0.5

0.5

1

1.5

2

2.5

3

3.5

4

y
–0.5 0 0.5

y

x

0.5

1

1.5

2

2.5

3

3.5

4

x

1.5

2

2.5

3

3.5

4

4.5

5

5.5

2

3

4

5

6

7

8

Note: Left: Th/Tc = 6; right: Th/Tc = 9)

HFF
18,3/4

554



4. Conclusions
In this paper, an LES study of non-isothermal turbulent channel flows, in particular,
flows at low-Mach numbers but with variable thermo-physical properties have been
considered. Mean flow quantities as well as turbulent statistics have been presented
and discussed. As regards the mean velocities, a van Driest velocity transformation
was employed to collapse the results of the variable-density flows considered herein
into the classical logarithmic law. It was observed that the mean velocity profile at the
cold side deviate from the classical isothermal logarithmic law of the wall. On the other
hand, at the hot side, there is a better agreement between the present results and the
incompressible isothermal law of the wall. Further, our numerical studies predicted
that the turbulence kinetic energy near the cold wall is higher than near the hot one.
In other words, heat addition tends to laminarize the channel flow. The temperature
fluctuations were also higher in the vicinity of the cold wall, even though the peak of
these fluctuations occurs at the side of the hot wall.
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